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We describe a mechanism for pronounced biochemical oscillations, relevant to mi-
croscopic systems, such as the intracellular environment. This mechanism operates
for reaction schemes which, when modeled using deterministic rate equations, fail to
exhibit oscillations for any values of rate constants. The mechanism relies on amplifi-
cation of the underlying stochasticity of reaction kinetics within a narrow window of
frequencies. This amplification means that fluctuations have a dominant effect, even
though the number of molecules in the system is relatively large. The mechanism is
quantitatively studied within simple models of self-regulatory gene expression, and
glycolytic oscillations.
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1. INTRODUCTION

Biochemical oscillations have been studied from complementary experimental
and theoretical perspectives for many years. They appear to be generic processes
in biological systems, with numerous examples known in both epigenetic and
metabolic contexts.(1−4) Well known instances are circadian rhythms (e.g. in mi-
croorganisms(5,6)), and the oscillation of ATP and ADP concentrations during
phosphorylation of fructose-6-phosphate (F6P), a key step in glycolysis. (7,8) The
study of biochemical oscillations has benefited from an intimate collaboration
between experimentalists and theorists: reaction networks are pieced together in
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the laboratory, with hypotheses severely constrained by results from mathematical
models. (4,8) These mathematical models are generally constructed using determin-
istic chemical rate equations. Within this modeling framework, the signature of
oscillatory behavior is the existence of a limit cycle. The absence of a limit cycle
is assumed to imply that the underlying reaction scheme, upon which the model
is based, does not have cyclic behavior. Recently, a number of groups have chal-
lenged this assumption,(9−14) mainly in the context of calcium oscillations. They
have studied deterministic rate equations which support a limit cycle over a certain
range of parameter values, and have found, from computer simulations, that the
addition of noise can expand the region of parameter space in which cycles occur.
These authors demonstrate that this effect can be maximized for particular values
of the system size or noise strength. On this basis, the effect has been termed
“internal noise stochastic resonance.” We show here that internal noise can have
a far more profound effect on biochemical reaction kinetics; namely, inducing
amplified oscillations in systems which, when modeled with rate equations, lack
a limit cycle throughout their entire parameter space. Thus, from the view of con-
ventional deterministic modeling, these reaction schemes would be immediately
ruled out as candidates to describe biochemical oscillations.

In addition to the work already mentioned, the possibility of noise due to
the discreteness of the components of a system giving rise to cycles where none
previously existed, has long been discussed. (15,16) However, much of the discussion
was qualitative and lacked a theoretical framework. In this paper, we develop such
a framework, using the Van Kampen system-size expansion,(17−19) which allows
an exact analytic description of these stochastically induced cycles—indeed, our
theory reduces to a problem in linear algebra regardless of the reaction scheme
under study, thereby allowing straightforward analysis. A crucial point is that
this effect operates only in systems composed of a relatively modest number of
molecules—typically in the range 102–106. Many biochemical reactions within
cells operate with numbers of molecules in this range, which leads us to believe
that intracellular processes may well exploit this amplification mechanism. Our
result is at odds with the intuitive notion that fluctuations can be safely ignored
for systems composed of many thousands of molecules—the reason being that,
here, the amplitude of fluctuations is composed of two factors: the usual statistical
factor 1/

√
N (where N is the typical number of molecules in the system), and

a large factor R � 1 arising from the amplification of the underlying noise. If
R/

√
N ∼ O(1) or larger, the intuitive conclusion that fluctuations can be ignored

for N � 1, is incorrect.
For ease of presentation we shall introduce this mechanism through two

relatively simple examples—one epigenetic (gene regulation), the other metabolic
(glycolysis). Generalizations to more complex reaction schemes is straightforward,
since, as already mentioned, the analysis of fluctuations reduces to an exercise in
linear algebra. We will develop the theoretical ideas using the language of the gene
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Fig. 1. Reaction networks for the two models considered in this paper. In the gene regulation model
(panels a,b), mRNA (M) and the corresponding enzyme (P) have rates of degradation µ1 and µ2

respectively. Transcription occurs with rate k1 (with inhibition), and translation occurs with rate k2. The
functional form of inhibition is chosen to be an exponential function of relative enzyme concentration,
with “regulation parameter” λ. In Sel’kov’s model for phosphorylation of fructose-6-phosphate (panels
c,d), ATP enters the system with rate ν1 and ADP leaves the system with rate ν2. The enzyme PFK1
is activated by ADP, and this complex catalyzes the reaction with F6P (not shown) and ATP. Crucially,
we assume that only one molecule of ADP is required to activate PFK1.

regulation model (defined in Fig. 1a) for concreteness, because it involves only the
populations of two constituents, unlike the model of glycolytic oscillations which
involves four.

The outline of the remainder of this paper is as follows. In Sec. 2 we intro-
duce a bath model representation of the gene regulation model, and proceed to
instantiate this as a master equation. The deterministic limit of the master equation
is derived in Sec. 3, and is shown to correspond to the usual chemical rate equa-
tion description. We calculate the effect of weak fluctuations in Sec. 4, using the
Van Kampen system-size expansion. We obtain a description of the fluctuations
as a set of linear stochastic differential equations, which can therefore be ana-
lyzed exactly. The power-spectra obtained from these equations have resonance
peaks which considerably enhance the 1/

√
N effects we would naively expect

from fluctuations. The analysis (master equation, deterministic limit, first-order
fluctuations) is repeated in a condensed form for Sel’kov’s model of glycolysis
in Sec. 5. Again, we find a strong peak in power spectrum of the fluctuations
indicating amplified oscillations. We end with a discussion of our results in the
broader context of biochemical reaction networks.
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2. INDIVIDUAL-BASED STOCHASTIC MODEL FOR THE GENE

REGULATION MODEL

Consider, first, a simple reaction scheme in which an enzyme inhibits the tran-
scription of its parent gene (Fig. 1a and b). More elaborate reaction schemes based
on this simple model have long been proposed to explain circadian rhythms. (5,20) It
is well-known that a deterministic model of this simplest reaction scheme involving
two chemical agents (mRNA and the enzyme) will fail to produce cycles—at least
three chemical agents (the mRNA, the enzyme, and an intermediate form, e.g. the
primary RNA transcript) are required. It is important to recall that the determin-
istic model is an approximate representation of the actual chemical kinetics—it is
strictly accurate for an infinite bath of molecules which are well-mixed. In order
to describe a well-mixed system with a finite number of molecules it is neces-
sary to use a discrete stochastic formulation in which one tracks the probability
distribution of chemical concentrations over time. We have developed a standard
stochastic treatment of the two-agent reaction scheme in Fig. 1a and b. The calcu-
lational steps used in the approach are illustrated in a flow-chart (Fig. 2). By taking
the limit of the number of molecules in our system, N , to be infinite, we indeed
recover the deterministic theory—this is an important benchmark. To handle the
case of a finite number of molecules, we perform a system size expansion, (17)

which is a standard technique from the theory of stochastic processes, in which
fluctuations are accounted for within a perturbative treatment. The second order
terms in this expansion describe the fluctuations about the deterministic theory.
These fluctuations satisfy linear equations and their statistics can be solved exactly.
In particular, we calculate the power spectrum of these fluctuations. We find that
for a wide range of parameters, the power spectrum has a pronounced maximum
within a narrow window of frequencies.

In order to perform systematic numerical comparisons between integrating
the rate equations and simulating the stochastic model it is convenient to envisage
the reactions (Fig. 1a and b) occurring within two baths, as shown in Fig. 3a. The
empty state ∅ has been replaced by null constituents E1 and E2 to be discussed
further below. The reason for introducing two baths is simply because it is easier
to set up the dynamics of the system and is closer in spirit to other systems
(grounded in population dynamics) which have been analyzed in a similar way,
and are well-understood. (18,19) In addition to the pedagogical simplicity of the
bath formulation, it is also biochemically meaningful to describe the statistics
of molecular collisions in terms of baths. The solution of reagents consists of
a system, which at any given time, can be spatially decomposed into various
objects, viz. the particular molecules of interest as included in the reaction system
and microscopic regions of aqueous solution. In a well-mixed system the statistics
of inter-molecular collisions follows the law of mass-action. The same statistics
clearly can be represented by drawing various objects from baths, as will be
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Fig. 2. A flow diagram indicating the connections between deterministic and stochastic models of
the same reaction scheme. Within the deterministic model, if limit cycles are absent, then the model
predicts that cycling is absent. The stochastic model is analyzed using the system size expansion. At
leading order the deterministic theory is retrieved. The corrections account for stochastic fluctuations.
If these are amplified (with a factor R), then the model predicts large cycles, so long as the typical
number of molecules N satisfies N 1/2 < R.

described in more detail shortly. This algorithm is not meant to be a realistic model
of the actual dynamics, but then this is the case for any non-spatial stochastic model
of chemical kinetics. Dynamically realistic models are far more complicated, and
need to be formulated in terms of spatio-temporal distribution functions, such as
with Boltzmann’s transport equation. So long as we assume that the system is well
mixed, a non-spatial approach is satisfactory.

Our aim is to build an individual-based stochastic model, and so the basic
ingredients will be the number of M (mRNA) and E1 (null) constituents in bath
1 and of P (enzyme) and E2 (null) constituents in bath 2—in a given stochastic
realization at a given time t . The dynamics will consist of picking constituents
from the baths at each time step and attempting the specified reactions. Performing
many runs of such reactions will enable us to collect a large number of realizations
and extract average behavior. The reactions proceed according to the rates shown
in Fig. 3a, and if the selection of constituents does not correspond to one of the
four reactions, then the molecules are returned to their respective baths without
any action being taken.

On the basis of the specification so far, and summarized in Fig. 3a, numerical
simulations of the model can be carried out. We use the elegant Gillespie algo-
rithm(21) which uses the information encoded in the reaction scheme to generate
random time increments, in each of which a randomly selected reaction is forced
to occur. The time increments and reactions are selected according to weighted



170 McKane et al.

E1

S2

S1

E2

E1 S1

E1S2

E1S1

E1 S2

S2 E2 E1 A
k

+3

k
+

ν

k

1

2ν

B

A

k1

k
+

+

E

M

E

E

P

M

P

1

1

2

µ

k

k

1

2

1

2

E2

+ +

urn 1

B

A

urn 2

E1

urn 1

E

PM

2

urn 2

µ

(a)

(b)

1 0 λ

2

Fig. 3. In panel (a), the gene regulation reaction network (Fig. 1a and 1b) is recast in terms of two
baths. Available units of space (or resources) for mRNA in bath 1 are represented by constituents E1.
Likewise, available units for the enzyme in bath 2 are represented by constituents E2. Sel’kov’s model
for phosphorylation of F6P (Fig. 1c and 1d) is similarly recast in terms of two baths in panel (b). ATP
(S1) and ADP (S2) molecules, along with available units E1 are contained in bath 1, while the PFK1
enzyme (E2), and its complexes (A and B) are contained in bath 2.

distributions in such a way that the probability distribution of the stochastic time
series generated is exact. The results of some of these simulations are displayed
in Figs. 4 and 7.

It is also possible to derive a set of equations which describe the stochastic
process which is defined by the model we have specified. To do this, we first note
that there has been an implication that the choice of constituents at a given time
step is a random process, only dependent on the numbers of the various molecules
in the baths at that time, and not on choices or availability at previous time steps.
Assumptions of this kind imply that the process is Markov, and so can be modeled
using a master equation. (17,22) This is essentially a continuous time version of a
Markov chain. Before we can write down this equation, we need to define some
more quantities.

Let us denote the number of molecules of the various kinds as follows: in
bath 1 the number of molecules of M is n1 and in bath 2 the number of molecules
of P is n2. The state of the system is then denoted by the two numbers (n1, n2). We
will frequently write this as n when we simply want to refer to the general state of
the system. Note that we do not confer the status of independent variables on the
numbers of E1 or E2 constituents. If we denote the total number of constituents in
bath 1 by N1 and that in bath 2 by N2, then the number of E1 and E2 constituents
are simply what is required to make up these numbers: (N1 − n1) E1 and (N2 − n2)
E2 constituents. This is why it was necessary to introduce the null constituents:
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if they had not been included, the number of M and P molecules would not have
the freedom to vary—they provide room for independent changes in the numbers
of both M and P molecules.

We may now define transition rates from one state, n, to a different state
n′. For instance, in the fourth reaction, the number of P molecules increases by
1 (recall that the number of E2 molecules is not an independent variable). So
in this case, n = (n1, n2) and n′ = (n1, n2 + 1). We denote the transition rate by
T (n′|n). In our convention, initial states are on the right and final states on the left.
When picking the constituents, there is a probability of n1/N1 of M being chosen,
(N2 − n2)/N2 that an E2 is chosen, and the reaction happens at a rate k2. This
gives the result k2(n1/N1)(N2 − n2)/N2 for this particular transition rate. Others
may be found in the same way. A complete listing with n = (n1, n2) is

1. M
µ1−→ E1, n′ = (n1 − 1, n2),

T (n′|n) = µ1
n1

N1
.

2. P
µ2−→ E2, n′ = (n1, n2 − 1),

T (n′|n) = µ2
n2

N2
.

3. E1
k1−→ M , n′ = (n1 + 1, n2),

T (n′|n) = k1
(N1 − n1)

N1
= k0 exp (−λn2/N2)

(N1 − n1)

N1
.

4. M + E2
k2−→ M + P , n′ = (n1, n2 + 1),

T (n′|n) = k2
n1

N1

(N2 − n2)

N2
.

Note, we use an exponential function exp(−λ[P]) to model the down-regulation
of transcription. The primary reason is this form introduces one extra parameter
(λ) into the model, unlike the typical Hill form(20) (1 + α[P]q )−1 which intro-
duces two new parameters (α and q). Presumably the non-linear biological down-
regulation mechanism is extremely complicated, so the choice of the function for
a phenomenological study such as ours is somewhat arbitrary. The amplification
mechanism is not sensitive to the detailed form of this function.

Having defined the transition rates, we are now in a position to write down
the master equation. It has the general form(17,22)

d

dt
P(n, t) =

∑

n′ �=n

T (n|n′)P(n′, t) −
∑

n′ �=n

T (n′|n)P(n, t), (1)
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where P(n, t) is the probability that the system is in the state n at time t . This
equation has a simple interpretation: the first term on the right hand side is the
sum of the transition rates into the state n from all other states n′ and the second
term is the sum of the transition rates out of the state n into all other states n′.
When the second term is subtracted from the first, it gives the rate of change of
the probability P .

So far we have formulated a discrete stochastic model and given specified
analytic forms for transition probabilities between states, which can be used in
conjunction with the master Eq. (1) to, in principle, solve for the probability,
P(n, t), that the system is in state n at time t . We will now start from the master
equation and (i) determine the form that the model takes in the mean-field limit,
and (ii) implement the system-size expansion to study the origin of the cycling
behavior, which is absent in the deterministic (mean-field) limit.

3. THE DETERMINISTIC LIMIT

A straightforward way of obtaining the deterministic version of the model,
valid in the limit of very large system size, from the master equation is to multiply
(1) by n1 and n2 in turn and to sum over all the states. This generates rate equations
which are the deterministic equations if correlations between the variables are
ignored. Let us illustrate the method in the case of n2. We wish to calculate
〈n2〉 = ∑

n n2 P(n, t) by multiplying the master equation by n2 and summing over
n. On the left-hand side we find d〈n2〉/dt . On the right-hand side are two terms
which are nearly equal and opposite—if it was not for the n2 factor, they would
be. The only difference between the two terms is that n and n′ are interchanged.
So if n2 does not change in a reaction, as for reactions 1 and 3, then the two
contributions do in fact cancel out. If it decreases by 1, as in reaction 2, then a shift
in the sum over n2 gives an overall contribution of −1, and if it increases by 1, as
in the reaction 4, then a shift in the sum over n2 the other way, gives an overall
contribution of +1. This gives the result

d

dt
〈n2〉 = −µ2

〈
n2

N2

〉
+ k2

〈
n1

N1

(N2 − n2)

N2

〉
.

So far this is exact. The mean-field approximation enters through ignoring
correlations, which vanish as N1, N2 → ∞. So, for example, this means that
〈ni n j 〉 = 〈ni 〉〈n j 〉 for i, j = 1, 2. If we make this approximation and introduce
the fractions of M and P to be φ1 and φ2 respectively, in the limit N1, N2 → ∞,
then we find

dφ2

dt
= −µ2

N2
φ2 + k2

N2
φ1(1 − φ2).
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This is the required deterministic equation. So in summary, if we define φi = ni/Ni

and scale the time by introducing τ = t/N1, then the deterministic equations
corresponding to the individual based stochastic model we have defined are

dφ1

dτ
= −µ1φ1 + k0 exp (−λφ2)(1 − φ1), (2)

σ−1 dφ2

dτ
= −µ2φ2 + k2φ1(1 − φ2), (3)

where σ = N1/N2. Note that the mean-field approximation as applied to the first
equation implies that 〈exp (−λn2/N2)〉 = exp (−λ〈n2〉/N2).

Most of the theoretical investigations of biochemical reactions start from a
set of differential equations of the type (2) and (3). One of the first quantities of
interest in such studies are the fixed points of the system. If we denote the fixed
points with an asterisk and define X = λφ∗

2 , then X satisfies the transcendental
equation

k0 e−X = µ1µ2 X

k2λ − (k2 + µ2)X
, (4)

with the fixed points for φ1 given by

φ∗
1 = µ2 X

k2(λ − X )
. (5)

Note that 1 − φ∗
1 > 0 and so the denominator of the right-hand side of Eq. (4)

is never zero. Also, since the left-hand side of this equation is monotonically
decreasing from its value at X = 0 and the right-hand side is monotonically
increasing from its value at X = 0, it follows that there is always a unique solution
for X and therefore always just one fixed point. The condition 0 ≤ φ∗

2 ≤ 1 implies
that 0 ≤ X ≤ λ, but the condition 0 ≤ φ∗

1 ≤ 1 gives the stronger constraint

X ≤ k2λ

k2 + µ2
. (6)

The stability of these fixed points would always be of interest, but the
question takes on an added significance in our case, since the stability matrix
associated with the non-trivial fixed point Eqs. (4) and (5) plays a central role in the
analysis of the cycling phenomenon. To determine it, let us write the mean-field
Eqs. (2) and (3) in the form dφi/dτ = fi (φ) where i = 1, 2. The fixed points are
found from solving fi (φ) = 0 and a linear stability analysis consists of writing
φi = φ∗

i + (φ̂i/
√

Ni ), where the φ̂i are small deviations from the fixed point. (23)

Note that we have included extra factors of 1/
√

Ni in the small deviations from the
fixed point—which simply amounts to a re-scaling of φ̂i —compared to the usual
linear stability analysis, so as to make contact with the system-size expansion in
the next section. Linearizing about the fixed point gives dφ̂i/dτ = ∑

j Mi j φ̂ j ,
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where Mi j is defined by Mi j = ∂ fi/∂φ j |FP. Here FP means “evaluated at the fixed
point”. The explicit forms for the entries of the matrix M are

M11 = −µ1 − k0 exp (−λφ∗
2 ),

M12 = −k0λσ 1/2 exp (−λφ∗
2 )(1 − φ∗

1 ),

M21 = k2σ
1/2(1 − φ∗

2 ),

M22 = −σµ2 − σk2φ
∗
1 . (7)

These entries may be rewritten using the fixed-point equations to give

M11 = − µ1

1 − φ∗
1

, M12 = −λµ1σ
1/2 φ∗

1 ,

M21 = µ2σ
1/2 φ∗

2

φ∗
1

, M22 = −σk2
φ∗

1

φ∗
2

. (8)

From these expressions it is clear that all entries of M have a definite sign: M11, M12

and M22 are negative, and M21 is positive. Therefore, the determinant and the trace
of M are positive and negative respectively for all parameter choices. This already
tells us that the fixed point is stable, but further analysis is required if we wish to
know whether or not the fixed point is approached in an oscillatory fashion. This
will be discussed again in the next section.

4. ANALYSIS OF THE FLUCTUATIONS

In contrast with the innate discreteness of the stochastic model, the mean-field
equations involve functions of continuous variables. This is one of the reasons why
they are more amenable to analytic treatment. It is the limit N1, N2 → ∞ which
leads to the continuity of the mean-field equations, as well as to the elimination
of the fluctuations. In this section we will discuss how we can keep continuity, but
still not lose the stochastic nature of the system. This is achieved by using new
continuous variables x1, x2 in place of the previously used discrete variables n1, n2

to describe the probability distribution. The explicit form of the replacements are

n1

N1
= φ1 + x1√

N1
,

n2

N2
= φ2 + x2√

N2
. (9)

The 1/
√

N terms are present since, by the central-limit theorem, we expect fluctu-
ations to be of the order of 1/

√
N when the variables n1, n2 are expressed in terms

of the fractions n1/N1 and n2/N2. As N1, N2 → ∞, these fluctuations vanish,
and the system is entirely described by the mean-field variables φi (τ ), which can
be found, in principle, by solving Eqs. (2) and (3) with given initial conditions.
If we imagine a plot of the probability distribution P along the vertical axis, and
the variables ni along the horizontal axes, for various values of τ , then at the
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initial time τ = 0, P is a delta-function spike at the starting values of the ni .
As τ increases, not only does the position of the peak move, but the probability
distribution also broadens due to fluctuations. The φi (τ ), which are the solutions
of Eqs. (2) and (3), tell us the position of the peak of the distribution and the
variables xi (τ ) tell us something about the distribution itself. Actually it turns out
that to order 1/

√
N (here we use N to mean N1 or N2, since they are assumed

to be of the same order), the probability distribution is Gaussian, and since the
position of the peak is specified, all that is left to determine is the variance. Higher
terms in the 1/

√
N expansion give deviations from the Gaussian form, which our

numerical simulations show are very small for reasonable values of N . Once the
leading (deterministic) contributions have been subtracted out from (9) (by, in
effect, continuously moving the origin to the peak of the probability distribution)
only fluctuations remain. If the 1/

√
N1 and 1/

√
N2 terms are then factored out,

we may once again take N → ∞. In this way the xi become continuous variables,
and terms of different orders can be identified in the master equation.

The actual implementation of the system-size expansion is straightforward,
if tedious. It is discussed clearly in Ref. 17 and in some detail in Ref. 18. We
shall illustrate it by applying it to one term in the master equation only. The reader
should be able to understand the essential features of the method from this, and can
then consult the above references to get a broader picture. Let us take reaction 2,
in which the number of P molecules decreases by 1. It gives a contribution to the
term T (n′|n)P(n, t) in the master Eq. (1) which is equal to µ2(n2/N2)P(n1, n2, t).
It also gives a contribution to T (n|n′)P(n′, t) in the same equation which is equal
to µ2([n2 + 1]/N2)P(n1, n2 + 1, t). We can combine these two terms as follows:

Reaction 2 : (E2 − 1)

[
µ2

n2

N2
P(n1, n2, t)

]
, (10)

where E2 is a step operator which is defined in terms of its action on functions
of the ni by E±1

2 ψ(n1, n2) = ψ(n1, n2 ± 1). Similar operators can be defined for
the other variables. The advantage of using these operators is that, within the
replacement scheme (9), they have a simple form for large N . For example,

E±1
2 = 1 ± 1√

N2

∂

∂x2
+ 1

2N2

∂2

∂x2
2

+ . . . . (11)

Substituting (9) and (11) in (10), and expanding in inverse powers of
√

N2 one
finds a contribution proportional to 1/

√
N2:

1√
N2

µ2φ2
∂	

∂x2
, (12)
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and a term of order 1/N2:

1

N2
µ2

[
∂

∂x2
(x2	) + 1

2
φ2

∂2	

∂x2
2

]
. (13)

There are higher order terms, but this is as far as we need to go in the expansion.
The quantity 	 which appears in Eqs. (12) and (13) is numerically equal to P , but
is instead a function of the xi and of t . This means that the left-hand side of (1)
now reads

∂ P

∂t
= ∂	

∂t
−

√
N1

dφ1

dt

∂	

∂x1
−

√
N2

dφ2

dt

∂	

∂x2

= 1

N1

∂	

∂τ
− 1√

N1

dφ1

dτ

∂	

∂x1
− σ−1 1√

N2

dφ2

dτ

∂	

∂x2
. (14)

Equating the right-hand side of the master equation (Eqs. (12) and (13)) to the
left-hand side Eq. (14) order by order, we find that σ−1dφ2/dτ has a contribution
−µ2φ2 (the ∂	/∂x2 cancel out) and

∂	

∂τ
= µ2σ

[
∂

∂x2
(x2	) + 1

2
φ2

∂2	

∂x2
1

]
+ . . . , (15)

where the dots mean that the reactions other than 2 will also give a contribution.
This partial, but explicit, calculation allows us to see more clearly how

the expansion works. At leading order we have a contribution to the mean-field
equation for σ−1dφ2/dτ which is equal to −µ2φ2, which indeed appears in Eq. (3),
and in none of the other mean-field equations. Therefore, an alternative, and in
some sense more systematic, way of obtaining the mean-field equations is as the
leading order terms in the large-N expansion. The next-to-leading terms give a
partial differential equation for the probability distribution 	(x, t) which, when
we include all the other reactions, has the form

∂	

∂τ
= −

∑

i

∂

∂xi
(Ai (x) 	) + 1

2

∑

i, j

Bi j
∂2	

∂xi∂x j
. (16)

From (15) we see that A2(x) = −µ2σ x2 + . . . and B11 = µ2σφ2 + . . .. In fact
when all the reactions are included, the Ai (x) remain linear functions of the x j

and the Bi j remain independent of them. We may therefore write

Ai (x) =
2∑

j=1

Mi j x j . (17)

This means that the probability distribution at next-to-leading order, 	(x, τ ), is
completely determined by two 2 × 2 matrices: M and B, whose elements are
independent of the x j , and only functions of the φ j . In fact it is a characteristic
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of the large-N expansion that M is nothing else but the Jacobian matrix with
elements ∂ fi/∂φ j , which may be calculated directly from the mean-field Eqs. (2)
and (3). If the initial transients have died away and the solution to the deterministic
equations has approached a fixed-point φ∗, then M will simply be the stability
matrix at that fixed point. The stability matrix for the fixed point (4) and (5) is
given in the previous section. The matrix B has entries

B11 = µ1φ1 + k0 exp (−λφ2) (1 − φ1)

B22 = µ2σφ2 + k2σφ1 (1 − φ2)

B12 = B21 = 0. (18)

So, to summarize the position so far, we know the Mi j and Bi j in terms of the
parameters which define the individually-based stochastic model, and therefore
by solving Eq. (16) we can find all we need to know about the fluctuations for
large N1 and N2. The partial differential Eq. (16) is a Fokker-Planck equation—a
continuous version of the master equation—and can be solved, in principle, given
the initial condition that 	 is a delta-function spike at τ = 0. In fact, for the simple
case where the Bi j are independent of x j and the Ai are linear functions of the x j ,
it can be solved exactly. (17) The result is a multi-variate Gaussian with 〈xi 〉 = 0,
as already mentioned.

Our main aim in this paper is to understand oscillations and for this one of the
main tools is Fourier analysis. The form of Eq. (16) is not so useful for this purpose,
but fortunately there is a completely equivalent formulation of the stochastic
process which is ideally suited to investigation using Fourier transforms. Rather
than write an equation for the probability distribution function 	, an equation for
the actual stochastic variables xi (τ ) can be given; in other words, the problem may
be formulated as a set of stochastic differential equations of the Langevin type.
The Langevin equations which are equivalent to (16) are (17)

dxi

dτ
= Ai (x) + ηi (τ ), (19)

where ηi (τ ) is a Gaussian noise with zero mean and with a correlation function
given by

〈ηi (τ )η j (τ
′)〉 = Bi jδ(τ − τ ′). (20)

The system defined by Eqs. (19) and (20) is ideally suited to Fourier analysis, since
the Eqs. (19) are linear (since the Ai are) and Eq. (20) implies that the noise is white,
that is, the Fourier transform of its correlation function is frequency-independent.

Taking the Fourier transform of (19) gives

−iωx̃i (ω) =
2∑

j=1

Mi j x̃ j (ω) + η̃i (ω), (21)
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where the tilde denotes the Fourier transform. We may write this as

2∑

j=1

i j (ω)x̃ j (ω) = η̃i (ω), i j (ω) ≡ −iωδi j − Mi j . (22)

The Fourier transform of ηi (t) has the correlation function

〈η̃i (ω)η̃ j (ω
′)〉 = Bi j (2π )δ(ω + ω′). (23)

From Eq. (22) we obtain x̃i (ω) = ∑
j −1

i j (ω)η̃ j (ω), and averaging the squared
modulus of x̃i gives the power-spectra

Pi (ω) = 〈|x̃i (ω)|2〉 =
2∑

j=1

2∑

k=1

−1
i j (ω)B jk

(
†)−1

ki
(ω), (24)

where we have used i j (−ω) = 
†
j i (ω). We have omitted the proportionality

factor 2πδ(0). In practice, when comparing the analytically calculated power
spectra to those generated from a numerical time series, one uses a discrete Fourier
transform, and the proportionality factor is simply equal to the time increment of
the recorded values in the time series.

To isolate the resonance, we note that Pi (ω) has the form of the ratio of two
power series in ω. The denominator, which will largely control the position of
the resonance, can be simply expressed as the determinant of the matrix . If we
define D(ω) = det (ω), then the denominator is just |D(ω)|2.

In Eqs. (21)–(24) we have written everything in a rather general form, since
the formalism can be seen to generalize to the case of an arbitrary number of
constituents rather easily, such as in the model of glycolysis in the next section
which has 4 constituents. However, for the model we are presently considering,
there are only two constituents and the expressions for Pi (ω), i = 1, 2 have simple
explicit forms:

Pi (ω) = 〈|x̃i (ω)|2〉 = αi + βiω
2

|D(ω)|2 , (25)

where D(ω) = −ω2 + iω trM + det M and where

α1 = B11 M2
22 + B22 M2

12, β1 = B11,

α2 = B11 M2
21 + B22 M2

11, β2 = B22. (26)

Since the elements of the M and B matrices are known in terms of the parameters
of the model and the fixed point values of the φi , so are the αi and βi .

The denominator of the power spectrum in Eq. (25) is given by

|D(ω)|2 = (ω2 − det M)2 + (trM)2 ω2

= (
ω2 − �2

0

)2 + �2ω2, (27)
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where, since in Sec. 3 we found det M > 0 and trM < 0, we have introduced
�2

0 = det M and � = −trM . So, we may write the power spectrum as

Pi (ω) = 〈|x̃i (ω)|2〉 = αi + βiω
2

[(
ω2 − �2

0

)2 + �2ω2
] . (28)

This form for the power-spectrum shows clearly the existence of a resonance: for
a value of ω2 the denominator becomes small, and the power spectrum has a large
peak centered on this frequency.

To analyze the nature of the resonance in more detail, let us set z = ω2 and
ask for what values of z the power spectrum (28) has a maximum. The condition
d P/dz = 0 gives

βz2 + 2αz + [
α

(
�2 − 2�2

0

) − β�4
0

] = 0, (29)

where we have dropped the index i on αi and βi . Let us begin by neglecting the
term βiω

2 in the numerator of Eq. (28) which may be justified for some parameter
choices. Then the condition (29) simply becomes z = (2�2

0 − �2)/2. Since we
require z = ω2 > 0, this implies 2�2

0 > �2. In terms of the stability matrix M ,
this condition reads 2 det M > (trM)2, which implies that the eigenvalues of M
are complex. In the last section we showed that the eigenvalues of the stability
matrix were either real and negative or complex with a negative real part. The
condition that the power spectrum has an extremum imposes the latter.

In reality, the presence of the factor βiω
2 in the numerator of the power

spectrum may have a significant effect, and the full condition (29) has to be used.
From Eqs. (18) and (26) we see that the αi and βi are always positive, and so from
Eq. (29) we see that the sum of the roots of this equation is negative and so at least
one of the roots is negative. For the other one to be positive we require

α
(
�2 − 2�2

0

) − β�4
0 < 0. (30)

This is the general condition for an extremum of the power spectrum to occur.
It goes beyond the previous condition, which only involved the eigenvalues of
the matrix M , since it contains the βi which come from consideration of the
fluctuations about the fixed point. We may now ask if the extremum is a maximum.
It is straightforward to show by calculating d2 P/dz2 that, if a positive solution to
Eq. (29) exists, then it is automatically a maximum.

A peak in the power spectrum indicates a resonant frequency, and a cor-
responding oscillation at this frequency. We must stress that our use of the word
“resonance” here follows the more general usage; namely, a peak in the power spec-
trum as a function of frequency. In “stochastic resonance” and its derivatives (10,13)

(and references therein), the “resonance” refers to a maximized response of the
system as a function of some parameter, such as the strength of the internal noise.
Because of the potential for confusion, we often use the term “amplification”
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for the effect under consideration in this work. The height of the peak indicates
the strength of the amplification. The width of the peak indicates the amount of
frequency dispersion one would observe about the resonant frequency. We have
calculated the power spectra exactly for this epigenetic model. For a specific set
of parameters, we show the power spectra for fluctuations in mRNA and enzyme
concentrations (Fig. 4c and d respectively). We have also computed stochastic
realizations of time series for this reaction, using the exact Gillespie algorithm(21)

(Fig. 4a and b). Note, the resonant amplification R for mRNA (defined as the
height of the peak of the power spectrum relative to P(0)) is quite pronounced
(R ∼ 30), and, indeed, regular oscillatory peaks are discernible in the correspond-
ing time series (Fig. 4a). The constant dashed lines in Fig. 4a and b are the results
from the deterministic theory—which predicts a complete absence of cycling. We
emphasize that there are two competing quantities which combine to determine
the importance of these amplified oscillations—these are i) the relative height of
the peak in the power spectrum R, and ii) the mean number of molecules in the
system N . The amplitude of the oscillations in a time series measurement of the
concentration will be of the order R/

√
N . This is why the effect dies away for

macroscopic systems in which N is extremely large. In the example given here
R ∼ 30 (for mRNA fluctuations), and so we can estimate that the oscillations will
be negligible in intracellular systems for which NmRNA � 1000. Given the simplic-
ity of this two component model, and the modest estimate above, this mechanism
may be relevant to circadian rhythms in procaryotic cells, such as cyanobacteria, (5)

since such cells are small, and have no nuclear membrane separating transcription
and translation processes (justifying, to some degree, a two-component model).

In Fig. 5 we contrast the time series for the protein concentration (as shown
in Fig. 4b) with a similar time series for which the amplification mechanism is
not in effect (same parameters, but with λ = 10 instead of λ = 100). This second
time series lacks regularity and has fluctuations which are an order of magnitude
smaller, thus emphasizing the dramatic effect of the amplification mechanism on
the underlying fluctuations in the system.

In Fig. 6 we compare the exact form for the mRNA power spectrum, given
above in (25), to a numerically generated power spectrum. The latter is computed
from discrete Fourier transforms of a large number (10,000) of long (60,000
iterations) time series generated using the exact Gillespie algorithm described
earlier. There is very good agreement between the exact and numerical spectra, as
expected.

5. SEL’KOV’S MODEL OF GLYCOLYSIS

We now turn to an example from intracellular metabolic dynamics. Consider
the key step in glycolysis in which the enzyme PFK1 catalyzes the phosphorylation
of F6P. This reaction is actually rather complex, and rather sophisticated models of
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Fig. 4. Dynamics of mRNA and enzyme concentrations in the simple gene regulation model defined in
Figs. 1a and 1b. The rate constants are k0 = 1.0, k2 = 0.1, µ1 = µ2 = 0.001, the regulation parameter
is λ = 100.0, and the bath sizes are N1 = N2/2 = 20480. Panels (a) and (b) show time series of the
relative concentrations of mRNA (m) and enzyme (p) respectively. The constant dashed lines are the
predictions from the deterministic theory. Panels (c) and (d) show the power spectra (normalized so that
P(0) = 1) associated with the fluctuations in the mRNA and enzyme concentrations respectively. The
resonance peaks are the signature of this cycling mechanism. The relative amplification of fluctuations
is R = 27.9 for mRNA, and R = 3.4 for the enzyme.

this process have been developed over the years, guided by ever more quantitatively
precise experiments. (3,7,8) For the purposes of illustration, we shall concentrate on
one of the first, and simplest, models of this reaction due to Sel’kov. (24) Although
this model is no longer regarded as being an accurate representation of this reaction,
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Fig. 5. Dynamics of the enzyme concentration for the gene regulation model for two different values
of λ, with all other parameters as in Fig. 4. The solid curve corresponds to λ = 100 as in Fig. 4b (with
a scaled ordinate), while the dashed curve corresponds to λ = 10. In this latter case the condition for
oscillations is not satisfied and the amplified oscillations are replaced by typical noise. The horizontal
lines correspond to the mean concentration shifted up and down by a factor of 1/

√
N2 and thus give

an estimate of expected fluctuations based on standard central limit theorem arguments.

it captures the essence of the process. Sel’kov’s reaction scheme is illustrated in
Fig. 1c and d. A key parameter in this scheme is the number of ADP molecules
(conventionally denoted by γ ) required to activate the PFK1 enzyme. Within this
deterministic modeling framework it has been shown that γ > 1 is required for
cyclic behavior to emerge from the model (even though the biochemistry of PFK1
demands γ = 1), and that even then, the cycling exists in a very narrow range
of parameter values. We have reformulated Sel’kov’s reaction scheme using the
stochastic framework, but have restricted our attention to the more biologically
plausible case of γ = 1.

As before, the deterministic model is retrieved when the number of molecules
in the system is taken to be infinitely large, and predicts constant, non-cycling,
concentrations. When this number is finite, we account for the fluctuations in the
system using the system size expansion, and solve the simple linear theory in order
to calculate the power spectra for the various chemical agents.

The reactions which comprise the Sel’kov model of a key stage (phospho-
rylation of F6P by the PFK1 enzyme) in glycolysis are shown schematically in
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Fig. 6. The unnormalized power spectrum for mRNA fluctuations, as a function of frequency (for
parameter values, refer to Fig. 4c). The solid line is the exact result (25), while the circles correspond
to the power spectrum computed from the discrete Fourier transforms of 10,000 mRNA time series
generated from Gillespie’s algorithm.

Fig. 1c and d. Writing them out in a slightly different format, they read

AD P + P F K 1
k3
⇀↽
k−3

P F K 1/AD P

ν1−→ AT P

AT P + P F K 1/AD P
k1
⇀↽
k−1

P F K 1/AD P/AT P
k2−→ P F K 1/AD P + AD P

AD P
ν2−→

Once again we will introduce two baths.
For notational simplicity we will denote ATP by S1, ADP by S2, PFK1 by E2,

PFK1/ADP by A and PFK1/ADP/ATP by B. The first two will be placed in bath
number 1, and the last three in bath number 2 (Fig. 3b). It will also be necessary
to introduce “nulls” into bath 1, which we will denote by E1. These represent the
aqueous space which can potentially be filled by ATP or ADP. With this notation
A is defined to be E2S2 and B is defined to be S1 E2S2 and the five reactions are
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1. E1
ν1−→ S1

2. S2
ν2−→ E1

3. S1 + A ⇀↽
k1
k−1

B + E1

4. B + E1
k2−→ A + S2

5. S2 + E2 ⇀↽
k3
k−3

A + E1.

Let us denote the number of molecules of the various kinds as follows: in bath
1, the number of molecules of Sα, α = 1, 2 is mα , and in bath 2, the number of
molecules of A is n1 and of B is n2. The state of the system is then denoted by the
four numbers (m1, m2, n1, n2), which we will again write as n when we simply
want to refer to the general state of the system. If, as before, we denote the total
number of constituents in bath 1 by N1 and that in bath 2 by N2, then the number of
E1 and E2 constituents is simply N1 − m1 − m2 and N2 = n1 − n2, respectively.

The transition rates for this model are:

1. n′ = (m1 + 1, m2, n1, n2).

T (n′|n) = ν1
(N1 − m1 − m2)

N1
.

2. n′ = (m1, m2 − 1, n1, n2).

T (n′|n) = ν2
m2

N1
.

3. Forward reaction: n′ = (m1 − 1, m2, n1 − 1, n2 + 1).

T (n′|n) = k1
m1

N1

n1

N2
.

Backward reaction: n′ = (m1 + 1, m2, n1 + 1, n2 − 1).

T (n′|n) = k−1
(N1 − m1 − m2)

N1

n2

N2
.

4. n′ = (m1, m2 + 1, n1 + 1, n2 − 1).

T (n′|n) = k2
(N1 − m1 − m2)

N1

n2

N2
.

5. Forward reaction: n′ = (m1, m2 − 1, n1 + 1, n2).

T (n′|n) = k3
m2

N1

(N2 − n1 − n2)

N2
.

Backward reaction: n′ = (m1, m2 + 1, n1 − 1, n2).

T (n′|n) = k−3
(N1 − m1 − m2)

N1

n1

N2
.
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To find the deterministic equation we define sα = mα/N1, a = n1/N2 and b =
n2/N2 and scale the time by introducing τ = t/N1. This gives the deterministic
equations, corresponding to the individual based stochastic model we have defined,
to be

ds1

dτ
= ν1(1 − s1 − s2) − k1s1a + k−1(1 − s1 − s2)b, (31)

ds2

dτ
= −ν2s2 + k2(1 − s1 − s2)b − k3s2(1 − a − b)

+ k−3(1 − s1 − s2)a, (32)

σ−1 da

dτ
= −k1s1a + k−1(1 − s1 − s2)b + k2(1 − s1 − s2)b

+ k3s2(1 − a − b) − k−3(1 − s1 − s2)a, (33)

σ−1 db

dτ
= k1s1a − k−1(1 − s1 − s2)b − k2(1 − s1 − s2)b, (34)

where σ = N1/N2. The Eqs. (31)–(34) are Sel’kov’s equations(8,24) except for
the additional factors of (1 − s1 − s2) which arise from the introduction of the
nulls E1.

To investigate the fixed point structure, let us first note that if we replace the
term (1 − s1 − s2) by � in the Eqs. (31)–(34), it will enable us to examine the
Sel’kov model (� = 1) and our deterministic model � = 1 − s1 − s2, in tandem.
From Eqs. (31) and (34) we see that the fixed point has either to have �∗ = 0 or
ν1 = k2b∗ (all fixed point values are again denoted by asterisks). The first condition
cannot hold in the original Sel’kov model, but can in our version of the model:
in this case we see from Eq. (32) that s∗

2 = 0, and so s∗
1 = 1. This implies a∗ = 0

and b∗ is indeterminate. If �∗ �= 0, remarkably a unique fixed point is found in
both forms of the model, and moreover it takes on a reasonably simple form. The
specific results are:

• Fixed points of the original Sel’kov model

s∗
1 = [ν2k−3 + ν1k3]

k1k2k3
(k2 + k−1)

(
1 − ν1

k2

)−1

, s∗
2 = ν1

ν2
,

a∗ = ν1k3

[ν2k−3 + ν1k3]

(
1 − ν1

k2

)
, b∗ = ν1

k2
. (35)

• Fixed points of the modified Sel’kov model
The trivial fixed point: s∗

1 = 1, s∗
2 = 0, a∗ = 1.
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The non-trivial fixed point:

s∗
1 = [ν2k−3 + ν1k3] (k2 + k−1)

�
, s∗

2 = ν1

ν2

k1k2k3

�

(
1 − ν1

k2

)
,

a∗ = ν1k3

[ν2k−3 + ν1k3]

(
1 − ν1

k2

)
, b∗ = ν1

k2
, (36)

where

� ≡ k1k2k3

(
1 − ν1

k2

) (
1 + ν1

ν2

)
+ [ν2k−3 + ν1k3] (k2 + k−1) .

To make contact with the discussion in earlier sections, let us introduce the
notation φ1 = s1, φ2 = s2, φ3 = a, φ4 = b. Then the mean-field Eqs. (31)–(34)
take the form dφi/dτ = fi (φ) where i = 1, . . . , 4. Performing a linear stability
analysis gives the matrix Mi j . The explicit forms for the entries of this matrix for
the case when φ∗ is the fixed point (36) are given in the Appendix.

To study the fluctuations we introduce new continuous variables x1, x2, x3, x4

in place of the previously used discrete variables m1, m2, n1, n2, to describe the
probability distribution. The explicit form of the replacements are

m1

N1
= φ1 + x1√

N1
,

m2

N1
= φ2 + x2√

N1
,

n1

N2
= φ3 + x3√

N2
,

n2

N2
= φ4 + x4√

N2
. (37)

Proceeding as in Sec. 4 we carry out a system-size expansion. We find the deter-
ministic Eqs. (31)–(34) to leading order and the Fokker-Planck equation (16) at
next-to-leading order, with Ai (x) given by Eq. (17), except now that j runs from 1
to 4. So in this case, the probability distribution at next-to-leading order, 	(x, τ ),
is completely determined by two 4 × 4 matrices M and B. The stability matrix
for the fixed point (36) is given in the Appendix, where we also give the entries
of the matrix B. The analysis of the Fokker-Planck equation, the conversion to a
set of Langevin equations and the subsequent Fourier analysis is now exactly as
in Sec. 4, but with i, j = 1, . . . , 4.

We have calculated the power spectra for the ATP and ADP concentration
fluctuations exactly. We find that these power spectra have very large and sharp
peaks for a wide range of parameter values (Fig. 7c and d)—indicating that the
concentrations of these molecules will undergo significant oscillatory behavior
within a small-system setting. Explicit stochastic simulations of the reaction net-
work show that indeed large amplitude cycling occurs (Fig. 7a and b). The constant
dashed lines are the predictions from the corresponding deterministic theory—
showing a complete absence of cycling, as expected. The power spectrum peaks
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Fig. 7. Dynamics of ATP and ADP concentrations in the stochastic reformulation of Sel’kov’s
reaction scheme. The rate constants are k1 = 1.0, k−1 = 0.5, k2 = 0.2, k3 = 0.2, k−3 = 1.0, ν1 =
0.0005, ν2 = 0.03, and the bath sizes are N1 = N2 = 4096. Panels (a) and (b) show time series
of the relative concentrations of ATP (s1) and ADP (s2) respectively. The constant dashed lines are the
predictions from the deterministic theory. Panels (c) and (d) show the normalized power spectra associ-
ated with the fluctuations in the ATP and ADP concentrations respectively. The sharp resonance peaks
are the signature of this cycling mechanism. The relative amplification of fluctuations is R = 15.1 for
ATP, and R = 150.4 for ADP.

found in this example are rather large—of the order of 150 for ADP. This indicates
that intracellular environments composed of up to 25,000 ADP molecules operat-
ing according to this reaction scheme will show pronounced oscillations, caused
by amplification of the underlying stochasticity of the reaction kinetics.
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6. DISCUSSION AND CONCLUSIONS

We have described a mechanism by which a microscopic biochemical system
can show an amplification of stochastic fluctuations in the reaction kinetics of its
constituents. This mechanism leads to sizable oscillations in the concentrations
of the reagents for reaction schemes, which when modeled using rate equations,
show no cycling behavior for any values of their rate constants. We have illustrated
the effect in two very different biological examples—self-regulation of a gene,
relevant to the study of circadian rhythms, and the dynamics of ADP, ATP, and
PFK1 concentrations during glycolysis.

We stress here that the system-size expansion always leads to linear equations
for the fluctuations, with coefficients related to the steady-state concentrations pre-
dicted from the first-order theory (i.e. the deterministic rate equations). Thus, the
evaluation of the power spectra is simply an exercise in linear algebra. The sig-
nature of the amplification mechanism is the existence of a peak in the power
spectra. The existence of a peak is guaranteed if the stability matrix of the de-
terministic rate equations has complex eigenvalues, with negative real parts to
ensure stability. This provides a simple test for the existence of the mechanism
directly from the deterministic theory. Crudely speaking, if the approach to the
deterministic steady-state occurs via damped oscillations, then the inclusion of
second-order fluctuations will lead to the amplification of sustained oscillations.
It is also important to point out that the mechanism described here requires no
external tuning of rate constants. This is because the underlying stochasticity has
a flat spectrum in frequency space (i.e. white noise), and this automatically excites
the resonant frequencies of the system. The oscillations are also robust—in the
two examples given in this paper, cycles are present over a very broad range of
parameter values.

The examples of circadian rhythms and glycolysis given here are very simple
and designed to illustrate the amplification mechanism in two well-known areas
of cell biology. It will be important to analyze more realistic (and hence, more
complex) reaction networks using the same techniques. There is intense current
interest in analyzing the dynamical properties of such networks, especially with
regard to robustness. (25) Deterministic rate equations are used for these analyzes,
but this may need to be revisited on the basis of the results of this paper. For a
network involving M different chemical reagents, the analysis of fluctuations in
the system size expansion reduces to linear algebra with matrices of rank M . If
oscillatory behavior is found, the “special frequencies” will be closely related to
the M normal modes of the system. This implies an interesting analogy with the
theory of small oscillations in mechanics, (26) whereby complex oscillatory motion
can be decomposed into normal modes, with the lowest frequency modes almost
completely characterizing the dynamics. As we have stressed, this mechanism only
operates within a microscopic system, such as a cell, or internal region of a cell.
There is, however, a means by which this mechanism can lead to macroscopic
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oscillations in a population of cells; namely, synchronization of the individual
cellular cycles through weak intercellular interactions.

The amplification mechanism described here may be considered as a possible
cause for oscillatory phenomena in more complicated biological situations. The
hypothesis is theoretically elegant in that it does not require ad hoc nonlineari-
ties postulated simply to “generate” cycles. For example, endogenous circadian
rhythms in eucaryotes appear to be controlled by a complex transcriptional feed-
back loop involving the genes clock, cry, Bmal1 and members of the per gene
family. (27,28) Oscillations in the activities of these genes may be explained by this
new mechanism if the number of mRNAs, translational complexes, and product
proteins involved are small enough to allow the amplification term R to dominate.
This is not unreasonable given that the number of mRNAs (for a given gene) in a
eucaryotic cell ranges from 101 − 104. (29)

Although substantial evidence implicates nonlinear feedbacks between down-
stream intermediates and upstream effector enzymes as the cause of in vivo gly-
colytic oscillations, (30) other causes cannot be ruled out. The amplification mech-
anism described here might also cause or modify in vivo oscillations. The system
size of glycolysis, especially if compartmentalized in a eucaryotic cell, approaches
that required for noise amplification to have a pronounced effect. Intracellular F6P
concentration in the yeast Saccharomyces cerevisiae is approximately 0.1 mM.(31)

Therefore, a cell of 10 µm diameter contains on the order of 106 to 107 F6P
molecules. In mammalian cells, the concentration of PFK1 appears to vary be-
tween 0.1 and 1 micromolar, (32) yielding on the order of 103 to 104 PFK tetramers
per cell. Most eucaryotic cells have on the order of 109 ATP molecules, but some
orders of magnitude less ATP participates directly in glycolysis. There is also the
possibility of an interplay between limit cycles and amplified stochastic oscilla-
tions since, for systems which allow limit cycles, these two mechanisms sit either
side of the bifurcation point. If physiological parameter values shift over time, it is
possible that the mechanism responsible for oscillations may shift from one form
to another.

In conclusion, the condition for this effect of amplified oscillations is simply
the existence of damped oscillations in the corresponding rate equation model
(i.e. complex eigenvalues with negative real part in the stability matrix). Thus,
this mechanism is likely to be widespread in biochemical networks, implying
that dynamics in the cytoplasmic environment may be far richer than formerly
supposed on the basis of chemical rate equations.

A. EXPLICIT FORMS OF THE MATRICES M AND B

As explained in Sec. 5 of the main text, the matrix M , for the set of determin-
istic equations dφi/dτ = fi (φ), is defined by Mi j = ∂ fi/∂φ j |FP. For the system
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(31)–(34) the entries of the matrix are

M11 = −ν1 − k1a − k−1b, M12 = −ν1 − k−1b,

M13 = −σ 1/2 [k1s1] , M14 = σ 1/2 [�k−1] ,

M21 = −k2b − k−3a, M22 = −(ν2 + k3) + (k3 − k−3)a + (k3 − k2)b,

M23 = σ 1/2 [k−3� + k3s2] , M24 = σ 1/2 [k2� + k3s2] ,

M31 = σ 1/2 [(k−3 − k1)a − (k2 + k−1)b] ,

M32 = σ 1/2 [k3 + (k−3 − k3)a − (k−1 + k2 + k3)b] ,

M33 = σ [−k1s1 − k3s2 − k−3�] , M34 = σ [(k−1 + k2)� − k3s2] ,

M41 = σ 1/2 [k1a + k−1b + k2b] , M42 = σ 1/2 [(k−1 + k2)b] ,

M43 = σ [k1s1] , M44 = σ [−(k−1 + k2)�] , (A.1)

where � = 1 − s1 − s2. The a, b, s1 and s2 in these matrix elements are all as-
sumed to be evaluated at the fixed point (36).

The noise-correlation matrix, Bi j , is symmetric and given by

B11 = ν1(1 − s1 − s2) + k1s1a + k−1(1 − s1 − s2)b,

B12 = 0, B13 = σ 1/2 [k1s1a + k−1(1 − s1 − s2)b] , B14 = −B13,

B22 = ν2s2 + k2(1 − s1 − s2)b + k3s2(1 − a − b) + k−3(1 − s1 − s2)a,

B23 = σ 1/2 [k2(1 − s1 − s2)b − k3s2(1 − a − b) − k−3(1 − s1 − s2)a] ,

B24 = σ 1/2 [−k2(1 − s1 − s2)b] ,

B33 = σ [k1s1a + k−1(1 − s1 − s2)b + k2(1 − s1 − s2)b] .

+k3s2(1 − a − b) + k−3(1 − s1 − s2)a] ,

B34 = σ [−k1s1a − k−1(1 − s1 − s2)b − k2(1 − s1 − s2)b] ,

B44 = σ [k1s1a + k−1(1 − s1 − s2)b + k2(1 − s1 − s2)b] . (A.2)
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